1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
| #pragma GCC optimize(2) #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> #include <cctype> #include <vector> #include <cmath> using namespace std; #define pii pair<int,int> #define mp make_pair #define ll long long
char buf[1 << 20], *p1, *p2; #define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2)?EOF: *p1++) template <typename T> inline void read(T &t) { int v = getchar();T f = 1;t = 0; while (!isdigit(v)) {if (v == '-')f = -1;v = getchar();} while (isdigit(v)) {t = t * 10 + v - 48;v = getchar();} t *= f; } template <typename T,typename... Args> inline void read(T &t,Args&... args) { read(t);read(args...); } const int N = 4e5 + 10; const int K = 26;
int n,m,q,k,s,dis[N],F[N],poi[N],val[N],tot,fat[N][K],dep[N],dfn[N],rk[N],cnt,siz[N]; bool vis[N]; vector <int> G[N]; vector <pii> G2[N];
struct edg { int u,v,w; friend inline bool operator < (const edg &A,const edg &B) { return A.w < B.w; } }edge[N];
int find(int x) {return x == F[x] ? x : F[x] = find(F[x]);}
void clear() { tot = n;cnt = 0; for (int i = 1;i <= (n << 1);++i) G[i].clear(),F[i] = i,dfn[i] = rk[i] = 0; }
void Kruskal() { for (int i = 1;i <= m;++i) { int u = edge[i].u,v = edge[i].v,w = edge[i].w; u = find(u),v = find(v); if (u != v) { ++tot; poi[tot] = w; F[u] = F[v] = tot; G[tot].push_back(u); G[u].push_back(tot); G[tot].push_back(v); G[v].push_back(tot); } } }
void dfs(int x,int fa) { fat[x][0] = fa; dep[x] = dep[fa] + 1; dfn[x] = ++cnt;rk[cnt] = x; for (int j = 1;j <= 20;++j) { fat[x][j] = fat[fat[x][j-1]][j-1]; } for (auto y : G[x]) { if (y != fa) { dfs(y,x); } } }
int LCA(int x,int y) { if (dep[x] > dep[y]) swap(x,y); for (int i = 20;i >= 0;--i) { if (dep[fat[y][i]] >= dep[x]) { y = fat[y][i]; } } if (x == y) return x; for (int i = 20;i >= 0;--i) { if (fat[x][i] != fat[y][i]) { x = fat[x][i]; y = fat[y][i]; } } return fat[x][0]; }
int st1[K][N],st2[K][N];
void init() { for (int j = 0;j <= 20;++j) { for (int i = 1;i + (1 << j) - 1 <= n;++i) { if (!j) st1[j][i] = st2[j][i] = dfn[i]; else { st1[j][i] = min(st1[j-1][i],st1[j-1][i + (1 <<j-1)]); st2[j][i] = max(st2[j-1][i],st2[j-1][i + (1 <<j-1)]); } } } }
int query1(int l,int r) { int now = log(r - l + 1) / log(2); return min(st1[now][l],st1[now][r - (1 << now) + 1]); }
int query2(int l,int r) { int now = log(r - l + 1) / log(2); return max(st2[now][l],st2[now][r - (1 << now) + 1]); }
void solve() { int q; read(n,m,q); clear(); for (int i = 1;i <= m;++i) { read(edge[i].u,edge[i].v); edge[i].w = i; } sort(edge + 1,edge + 1 + m); Kruskal(); dfs(tot,0);init(); for (int i = 1;i <= q;++i) { int l,r;read(l,r); if (l == r) printf("%d ",0); else { int u = rk[query1(l,r)],v = rk[query2(l,r)]; printf("%d ",poi[LCA(u,v)]); } } puts(""); }
signed main() { int T;read(T); while (T--) solve(); return 0; }
|